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Infant Mortality Stakeholder Impact Executive Summary

Executive Summary

At the direction of Governor Mike Pence, reducing infant mortality became the top priority of the Indiana
State Department of Health (ISDH) in January 2013. Indiana falls at the bottom 20% of all states for
this frontline measure of health [1]. In 2011, Indiana’s infant mortality rate was 7.7 deaths per 1,000 live
births, well below the Healthy People 2010 goal of 6.0 deaths per 1,000 live births and the subsequent
Healthy People 2020 goal of 4.5 deaths per 1,000 live births [2]. While the nationwide infant mortality
rate declined 12% from 2005 through 2011, Indiana was among the states the Centers for Disease Control
& Prevention classified as showing “no significant change” during that time [1].

To address this situation, the state of Indiana commissioned a data-driven analysis centered on infant
mortality that unified information from previously unlinked sources across state agencies. The KSM
Consulting (KSMC) team utilized sophisticated machine learning techniques on the available data to
identify highly granular at-risk subpopulations and provide actionable insights for stakeholders and
policy makers.

Findings from this analysis included:

• Infant mortality risk in the state of Indiana is not randomly distributed, but exhibits statistically
significant patterns that could be used for targeted investment of resources to improve outcomes.

• Inadequate prenatal care, Medicaid enrollment, and young maternal age were shown to be the
strongest predictors for adverse birth outcomes.

• While the identified high-risk subpopulations account for only 1.6% of all births in Indiana, they
account for nearly 50% of infant deaths, suggesting that the identified subpopulations are not only
significant, but could be used as the basis for targeted interventions.

Empowered with the results of analysis, the KSMC team developed a set of predictive algorithms that
query data, predicts birth outcome risk for various levels of granularity, and writes the quantitative results
back to a database. This “Birth Outcome Risk Quantification” tool is dynamic in nature, allowing future
analysts to explore a multitude of questions related to infant mortality by including new variables or
focusing on specific subpopulations. By applying this tool to available data, the state of Indiana can
perform continuous analysis and find new ways to connect at-risk mothers with the resources that will
support a positive birth outcome.

This document is structured in two main sections: a non-technical section explaining findings and a
technical section providing mathematical background on the algorithmic approach taken to gain a more
complete, fundamental understanding of the underlying causes of infant mortality.
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Infant Mortality Stakeholder Impact 1.1. Introduction

1.1 Introduction

This document will detail findings and explain analytical methods for identifying demographically and
spatially stratified subpopulations with risk factors associated with adverse birth outcomes. The inte-
grated datasets contained information on health, financial history, demographics, insurance, criminal
history, maltreatment, and domicile and treatment locations. The KSMC team employed statistical
machine learning techniques, as described in detail in Part II, to build predictive models that estimate
risk for adverse birth outcomes as a function of available data.

1.1.1 Data Sourcing

Infant mortality has been studied extensively by public health researchers and many of its contributing
factors are well known, including low birth weight [3], premature births [4, 5], smoking while pregnant
[6], Sudden Infant Death Syndrome (SIDS)/unsafe sleep [7], and lack of prenatal care [8]. Though
researchers have thoroughly investigated infant mortality and related health issues, previous efforts were
based on narrow datasets focusing solely on one or two previously known phenomenon. After completing
a thorough literature review in the area of infant mortality, infant morbidity, and child death, the KSMC
team was able to identify recurring conclusions drawn and gaps in existing scientific and clinical research.
These aided in defining the direction and course of investigation informed the data selection methodology
employed.

After evaluating a large collection of state data resources, the KSMC team narrowed scope to examine
variables from 17 integrated datasets (from 5 agencies and 4 public sources). Due to the fact that low birth
weight and preterm birth is highly correlated with infant deaths in Indiana, the KSMC team expanded
the population of infants with adverse birth outcomes to include not only deaths, but also to include
infants born with low birth weight and preterm birth [3, 5]. After profiling and single-source data analysis
was completed, variables or fields were selected and data extraction jobs were built to normalize and
load data into an advanced analytics environment and table schema designed for integrated (horizontal)
analysis. The KSMC team then analyzed integrated data to determine that 7 datasets contained variables
with predictive power that could enable targeted interventions. For an in-depth description of the data
used in this analysis, consult the Data Collection section of Part II.

1.1.2 Predictive Models

By applying machine learning and logistic regression techniques, described in detail in Part II, to inte-
grated data, the KSMC team identified models for estimating the risk of adverse birth outcomes based
on maternal age, Medicaid status, and use of prenatal care with regional and demographic stratification
at the ZIP code level. As a result of this analysis, high-risk subpopulations were identified that, while
accounting for only 1.6% of the population, account for nearly 50% of all infant deaths.1 The identified
subpopulations were statistically significant, and can likely form the basis for targeted demographic and
regional interventions.

1Deaths that fall in the other 50% are largely due to unpreventable congenital/chromosomal abnormalities or accidents.
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Infant Mortality Stakeholder Impact 1.2. Findings

1.2 Findings

1.2.1 Number of Prenatal Visits the Key Predictor of Birth Outcomes

Of all factors studied, number of prenatal visits was the most significant predictor of adverse birth
outcomes. Figure 1.1 shows the risk of low birth weight was highest for individuals with 0-5 visits and
decreased steadily to a minimum at 15-20 visits. The data indicate that 64.9% of infant deaths were to
mothers with fewer than 10 prenatal visits.

Figure 1.1: Estimated low birth weight probability due to number of prenatal visits
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1.2.2 The Effects of Maternal Age, Medicaid status, and Prenatal Visits on
the Risk of Birth Outcomes

Stratifying observations by age range showed that 15- to 20-year-old mothers with fewer than 10 prenatal
visits were at the highest level of risk for adverse birth outcomes. While the risk of low birth weight
increases with age and decreases with the number of prenatal visits, analysis also showed a significant
increase in risk of low birth weight outcomes for the Medicaid population. Available data showed that
from 2012-2014, the infant mortality rate within the Medicaid population was 7.16 deaths per 1,000
live births, while the infant mortality rate for the non-Medicaid population was 4.19 deaths per 1,000
live births. According to available data, approximately 50% of all births in Indiana are either Medicaid
eligible or Medicaid funded. Age becomes a compounding factor, as shown by Figure 1.2, as women at
20 years of age had an estimated probability of 0.75 of being on Medicaid, which is 50% greater than
the average.

Figure 1.2: Estimated probability of mother’s Medicaid enrollment at birth

Thus, data demonstrate that although younger mothers as a whole typically have better outcomes,
younger mothers on Medicaid are significantly less likely to receive adequate prenatal care [Figure 1.3]
and thus are at higher risk of having low birth weight infants.

The KSMC team further analyzed distance to centers for prenatal and postpartum care; no adverse
impact due to travel times was exhibited in these data. In sum, the youngest and poorest mothers,
despite being on Medicaid and theoretically having access to care, are not getting the recommended
number of prenatal visits and thus make up the subpopulation with highest number of adverse birth
outcomes.
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Figure 1.3: Estimated probability of fewer than 10 prenatal visits

1.2.3 Fiscal Impacts in High-Risk subpopulation

Infants born in the high-risk subpopulations who do not die still have significant related medical costs that
could be reduced. Nearly 60% of low birth weight outcomes occurred within the Medicaid population,
while only 40% occurred in the non-Medicaid population. Although these low birth weight infants
only account for 5% of births, they account for approximately 35% of annual Medicaid expenses for
infants.

1.2.4 Negated Predictive Power of Other Variables

Although results of data science showed prenatal visits, Medicaid status, and mother’s age exhibited the
most predictive power, the KSMC team explored and can report on the significance of other known risk
factors.

Early analysis showed that while significant racial disparities in birth outcomes exist, this disparity is
driven primarily by socio-economic factors. Young, low-income women, on Medicaid, regardless of race,
tended to have poor birth outcomes. Additionally, no spatial clustering effects could not be explained
with available data; thus, strictly environmental factors such as air quality or groundwater contamination
were not analyzed due to the unlikelihood of significant findings.

While ISDH expressed interest in the impact of birth order, no method could consistently and accurately
determine birth order in the data. Analysis of the available birth order data yielded no significant
findings on the impact of birth order. Smoking was determined to be statistically significant as a
factor influencing birth outcomes. However, the KSMC team identified no specific subpopulation overly
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1.3. Applying the Findings: Birth Outcome Risk

Quantification

correlated with smoking in the available data. Deaths related to asphyxiation, including S.I.D.S., co-
sleeping, and maltreatment show only a random trend, meaning the available data provides no variables
with predictive power.

1.3 Applying the Findings: Birth Outcome Risk Quantifica-
tion

Results of extensive analysis enabled the KSMC team to create a dynamic tool that allows users to define
variables (e.g., age, ZIP code, number of prenatal visits) and calculate the risk of birth outcomes (e.g.,
low birth weight). Users can also use group individuals into high-risk subpopulations, uniquely providing
public health experts and policy officials the ability to digest information about risk, understand where
these at-risk populations live, investigate factors as they wish, and target interventions (who, where, and
why). The tool offers a level of granularity that allows the state to operate in a more precise way - ZIP
codes permit more policy differentiation than that offered by county-level analysis. It is clear that not
all ZIP codes within a city are equal in terms of risk, indicating interventions can and should be much
more targeted.

One key feature of this tool is that while a basic assessment of risk can be done with traditional statistical
methods, neither the rigorous calculations nor the grouping of individuals into subpopulations can.
Analysts now have a way to look at things in rigorously defined “buckets,” each of which provides valuable
information about at-risk subpopulations. Inferences about causal relationships between characteristics
of the individual and the subpopulation to which the individual belongs can be made with much more
statistical validity than before. Researchers are now empowered to learn about trends over time and
rigorously examine the efficacy of programs.

The machine learning algorithm both determines the significance of user-specified inputs, and calculates
the risk of low birth weight. KSMC then integrated the results of calculations with SAP Lumira to
generate dynamic dashboards, such as the county-level risk calculation information displayed in Figure
1.4 to help analysts, policy-makers, and other stakeholders better understand the distribution of risk
among a variety of subpopulations.

Furthermore, the tool’s predictive power can grow as one defines new parameters: the model easily
allows researchers to iterate by adding additional, relevant information over time. One could identify
trends over time, understand the effects of a new program, and/or identify new high-risk subpopulations.
This particular project examined all mothers regardless of age, race, location, Medicaid status, etc. But
researchers using the tool can also create a subset of interest beforehand (Medicaid only, certain age group,
certain county, etc.) and then the algorithm will group subpopulations of that subset into distinct high-
risk buckets. For example, currently the risk profile of women on Medicaid is significantly different than
the population at large. In sum, even the risk tool itself goes beyond a generic approach, as changing
population inputs allow future users to address specific research questions.
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Figure 1.4: Calculated risk of low birth weight by county
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Infant Mortality Stakeholder Impact 2.1. Introduction

2.1 Introduction

This study concerned the development of a robust methodology for identifying demographically and
spatially stratified subpopulations with risk factors for adverse birth outcomes, and was commissioned
by the State of Indiana as part of an ongoing effort to reduce its high infant morality rate. The quantity,
high dimensionality, heterogeneity, and varying quality and completeness of the data available made
many of the traditional statistical tools of epidemiology ill suited for the task at hand. The statistical
problem was twofold: 1) use clustering techniques to identify population segments (principal components)
associated with known risk factors and 2) quantify the probability of an adverse outcome for each
identified cluster.

Standard methods within principal component analysis (PCA), which is a widely used class of techniques
for dimensionality reduction in high-dimensional datasets, are weakly founded on assumptions of system
linearity and are unable to directly handle multi-scale and categorical data. Kohonen’s self-organizing
map (SOM) algorithm is a neural-network-based, nonlinear generalization of PCA capable of handling
high-dimensional and multi-scale datasets by producing a two-dimensional mapping of data while main-
taining the topological structure of the input feature space [9, 10]. The two-dimensional representation
of the input data promotes exploratory visual analysis of high-dimensional datasets, which allows for
the development of a meaningful portrait of the latent multivariate patterns and clustering behavior
expressed in the data [10, 11].

SOMs have found numerous applications in academia and industry alike, from the analysis of DNA
micro-arrays in cancer research to demographic and behavioral population segmentation in consumer
marketing [10, 11]. The ease with which SOMs handle multi-scale, nonlinear systems make them ideal
tools for epidemiological analysis, and in recent years a small number of applications papers have been
published on the topic [12].

This report details the application of the SOM technique to the identification of high-risk subpopulations
reflected in the State of Indiana data. These datasets consisted of individual vital records, Medicaid
claims, income tax records, and census information. While the high-risk population clusters accounted for
1.6% of the sample population, they accounted for nearly 50% of all deaths, which suggested that the SOM
technique was a viable mechanism for the identification of at-risk populations and individuals.

2.2 Methods

2.2.1 Data Collection

The data selection process began by conducting guided discovery sessions with state agency leadership,
subject matter experts, program directors, and system administrators from the following agencies within
the State of Indiana: Department of Health, Family and Social Services Administration, Department
of Child Services, Department of Revenue, Department of Local Government Finance, Department of
Corrections, Department of Workforce Development

These discovery sessions were designed to gain a high-level understanding of the data collected by the
agencies, collection methodologies, source data systems, potential data quality issues, and to obtain
relevant system and data documentation. From this initial information gathering process, it was possible
to determine the breadth of data available, system interconnectivity, and areas in which information
contained in these systems overlapped.
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Based on these interactions, a subset of the systems and data sources expected to deliver the highest
level of diverse information content from those available was selected for further analysis. This further
analysis consisted of data profiling and statistical analysis. Data profiling is a set of automated processes
designed to build a better understanding of data quality, data formats, ranges of content in each field, and
database table schema. The type and range of statistical analysis performed was data set dependent, but
generally consisted of various types of value field distribution analysis, comparisons of distribution shapes
to external research publications, correlation analyses among variables in the datasets, and comparison
of geospatially or similar count-level data to published population distributions.

After profiling and single-source data analysis was complete, variables or fields were selected and data
extraction jobs were built to normalize load data into the advanced analytics environment and table
schema for integrated (horizontal) analysis. The following datasets constituted the corpus of data that
included individuals born within the period from 2012 to 2014: vital records and maternal and child
health (MCH), both maintained by the Indiana Department of Health; Medicaid claims data, maintained
by the Family and Social Services Administration; tax data, maintained by the Indiana Department of
Revenue; and open source data including 2012 Census data.

These datasets encompassed commonly collected birth information, demographic information about the
parents, Medicaid claims information for mothers from 3 months prior to pregnancy to 2 years after
pregnancy, and Medicaid claims information for children from birth to 2 years after birth. Information
on the mothers 2011, 2012, and 2013 taxable income, where available, came from the Department of
Revenue. In total, the available database contained 216,488 records. Census population statistics on a
ZIP code level provided insight into the spatial variation of risk factors.

2.2.2 Logistic Regression Modeling

Given the quantity of data available and the large number of potential features, analysis began by
modeling the probability of high-risk birth outcomes as a function of their known risk factors with logistic
regression, which is a statistical classification and modeling technique for predicting the probability of a
binary outcome [13]. Coefficients of each fitted model are interpreted as odds coefficients that can be used
to compute the marginal probability of a binary outcome as a function of a set of independent variables.
The intent of this analysis was to ensure that the data available demonstrated trends consistent with
the current scientific and clinical literature regarding known risk factors for infant mortality and other
adverse birth outcomes.

Statistical analysis of the data commenced with logistic regression to model the probability of 1) a
birth below 2500 grams based upon maternal age, the number of prenatal visits, and Medicaid status,
2) the probability that a mother will receive fewer than the minimum recommended 10 prenatal visits
based upon her age and Medicaid status, and 3) the probability that a mother will be on Medicaid as
a function of her age. The statistical modeling tools within the generalized linear modeling packages in
the R statistical library computed fitted residuals, power calculations, and confidence intervals on the
fitted coefficients for each of the fitted models.

2.2.3 Self-Organizing Maps

Self-organizing maps are a form of neural network that can be used to identify a two-dimensional em-
bedding of a set of high-dimensional observations while preserving the topological properties of the input
space [9]. The technique maps discrete observations to a pre-determined grid of nodes based upon mutual
similarity, which is assessed using an arbitrary norm or distance metric. Elements mapping to the same
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nodes are more similar to each other than to observations mapping to disparate nodes; adjacent nodes
are more similar to each other than to others. This mapping affects a nonlinear, spatially constrained
form of k-means clustering on the data [9]. SOMs permit visualization by mapping an ordered grid of
elements and coloring nodes in the grid by vector units corresponding with the input feature of interest.
In this manner, patterns expressed across variables may be easily observed.

2.2.4 Identification of High-Risk Clusters

Due to varying recommendations for prenatal care levels and clinical opinions on cutoff levels for birth
weight and gestational age defining high-risk births, a trained SOM was used to identify clusters in the
continuum of all three factors that could be used to identify high-risk subpopulations. The KSMC team
used R statistical programming language and the kohonen R package to carry out the entirety of the
SOM analysis [11].

The SOM first initialized a 20x20 grid of nodes and then trained over the course of 100 iterations at a
learning rate from 0.05 to 0.01, controlling the rate of convergence and preventing over-fitting [11]. A
hierarchical cluster analysis performed on the set of code vectors permitted the representation of the
average vector within each node in the SOM grid.

This procedure resulted in the identification of eight distinct clusters with varying expression levels for
both the training factors and other independent variables. Kruskal-Wallis tests (non-parametric analogs
to ANOVA) on these clusters yielded statistically significant values for the variability between clusters.
Upon computing intra-cluster distributions of mortality rates and other factors, the plotting functions
in R were used to create visualizations of them using color-coded hexagonal maps of SOM factors and
box plots.

2.2.5 Analysis of High-Risk Cluster Populations

An additional SOM was used to extract a subset of 4161 individual observations belonging to the high-
risk clusters identified in the previous section, using prenatal visits, maternal age, estimated gestation,
birth weight, Medicaid status, mother’s ZIP code, census population, census income, and distance to the
nearest hospital by ZIP code as features. The intent of this secondary SOM analysis was to reduce the
signal-to-noise ratio inherent in such high-dimensional datasets.

The second SOM was initialized to a 10x10 grid of nodes and then trained over the course of 100
iterations at a learning rate from 0.05 to 0.01, preceding a hierarchical cluster analysis on the set of
code vectors extracted by the SOM for each node. This analysis concluded with the identification of
six distinct clusters representing different at-risk subpopulations with higher spatial and demographic
granularity. SOM mapping techniques produced inter- and intra-cluster distributions of these factors in
a visual format.

2.3 Results of Technical Analysis

Logistic regression analysis performed on the set of known risk factors for adverse birth outcomes identi-
fied empirical probability density estimates. Figures 2.5 and 2.6 show estimates of the probability of low
birth weight (defined as a birth weight below 2500 grams) as conditionals of maternal age and prenatal
visits, respectively. Figure 2.5 specifically shows a box plot of the probability of low birth weight as
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a function of maternal age, with the probabilities over the range of prenatal visits shown at each age
level; the inverse of this is true for Figure 2.6. In each case, Medicaid and non-Medicaid populations are
denoted as distinct curves with separate bars. Table 2.1 reports the estimates of the model coefficients
along with their p-value estimates and 95% confidence intervals. These results indicate that the risk of
low birth weight increases with age and decreases with the number of prenatal visits; it is also clear from
these results that there is a significant increase in risk of low birth weight outcomes for the Medicaid
service population.

Table 2.1: Logistic regression of low birth weight odds as a function of maternal age, prenatal visits, and
Medicaid status.

Variable Odds Ratio Std. Err. z-score p-value Lower 2.5% Upper 97.5%
Maternal Age 1.014 1.148e−3 9.442 < 2e−16 1.011 1.017
Prenatal Visits 0.8874 2.091e−3 -57.13 < 2e−16 0.8838 0.8911
Medicaid Status 1.396 1.768e−3 18.87 < 2e−16 1.348 1.445

Figure 2.8 shows estimates of the probability of inadequate prenatal care (defined as having fewer than
10 prenatal care visits) as a function of maternal age and Medicaid status.

Table 2.2: Logistic regression of odds of a mother receiving adequate prenatal care as a function of
maternal age and Medicaid status.

Variable Odds Ratio Std. Err. z-score p-value Lower 2.5% Upper 97.5%
Maternal Age 0.9896 1.117e−3 -16.67 < 2e−16 0.9887 0.9914
Medicaid Status 1.617 13.49e−3 8.515 < 2e−16 1.583 0.8911

These findings indicate that younger mothers, particularly those within the Medicaid population, are
significantly less likely to receive adequate prenatal care and thus have low birth weight infants, which
led to an additional analysis of the age distribution of the Medicaid and non-Medicaid populations.
Figure 2.7 shows a histogram of the age distribution of all mothers in the available dataset overlaid with
kernel density estimates of the age distributions of the Medicaid and non-Medicaid populations; visual
inspection of these figures reveals that the age distribution of the Medicaid population follows a right
skewed normal distribution, suggesting that younger mothers are more likely to be on Medicaid.

To test this notion, a logistic regression on the data estimated the probability that a mother would be
enrolled in Medicaid at the time of birth as a function of age; Figure 2.9 shows this estimated probability
distribution. Table 2.3 reports the estimates of the model coefficients along with their p-value estimates
and 95% confidence intervals. The mean and median age of mothers in the available dataset was 27 years
and the estimated probability of a mother being on Medicaid was approximately 0.5. This is consistent
with the fact that nearly half of all births in both Indiana and the United States as a whole are covered
by Medicaid. In contrast, women aged 20 had an estimated probability of 0.75 of being on Medicaid,
which is 50% greater than the average. The 2012 Indiana Natality Report completed by the Indiana
Department of Health corroborates these findings [17].

Table 2.3: Logistic regression of odds of a mother recieving Medicaid benefits at the time of birth as a
function of age.

Variable Odds Ratio Std. Err. z-score p-value Lower 2.5% Upper 97.5%
Maternal Age 0.8632 9.075e−4 -162.1 < 2e−16 0.8617 0.9914
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Rather than define risk factors through a set of binary conditionals (birth weight less than 2500 grams,
gestational age under 37 weeks, fewer than 10 prenatal visits) as was required in the logistic regression
analysis, the machine learning process of the SOM independently identified eight distinct subpopulations
expressing different distributions of all three risk factors simultaneously via a hierarchical cluster analysis
on the code vectors mapping to each SOM node. The convergence rate of the SOM, which is measured
in terms of the inter-node average distance, indicates the increasing similarity of observations mapping
to the same node over each iteration; Figure 2.10a demonstrates this metric and shows that a high
degree of clustering is achieved within the first 50 iterations, half of the total available. Hierarchical
cluster analysis of the node vector averages identified eight distinct node clusters, shown in Figure 2.10b,
representing distinct groups having mutually similar distributions of birth weight, gestational age, and
prenatal visits. The total number of observations mapping to each node and cluster were generally
uniform with an average node cardinality exceeding 500 distinct observations, the distribution of which
is shown in Figure 2.10c. Due to the stochastic nature of the SOM algorithm, the x- and y-axes of
SOM visualizations have no statistical significance other than to denote similarity between adjacent
nodes.

The interpretation and exploratory value of SOM plots is apparent when viewed on a factor expression
level, whereby the color of each node correlates with the expected value of a particular variable for the
observations mapping to that node. Inspection of Figure 2.11a, which shows the (scaled) expected birth
weight of observations mapping to each node, clearly shows that observations in clusters 3, 4, and 8
correspond with low birth weight outcomes; the corresponding box plot in Figure 2.11b shows distinct
intra-cluster birth weight distributions between clusters and accompanying Kruskal-Wallis test results
supporting the clustering effects.

Figures 2.12a, 2.12b, 2.13a and 2.13b present this same general behavior for gestational age and prenatal
visits, respectively. Analysis of the individual outcomes associated with these three clusters revealed
that while comprising only 1.6% of the sample population, these clusters contained samples representing
49.8% of all infant deaths.

An additional SOM using data including individual counts of prenatal visits, maternal age, estimated
gestation, birth weight, Medicaid status, ZIP code, census population, census income, and distance to
nearest hospital by ZIP code analyzed the subset of 4161 individual observations belonging to these high-
risk clusters. Due to the large number of samples in the entire dataset, it was necessary to work from this
subset to minimize the signal-to-noise ratio issues that come from such asymmetric group sizes. The hi-
erarchical cluster analysis on the resulting code vectors identified six distinct subpopulations within this
high-risk group, which is shown with factor distributions in 2.14. These results signal significant strati-
fication of risk factors, demographics, and regional attributes within the high-risk subpopulation.

2.4 Summary and Conclusions

The results presented demonstrate the efficacy of the SOM approach for identifying statistically signifi-
cant demographically and spatially stratified subpopulations with risk factors for adverse birth outcomes.
The subpopulations identified by the SOM algorithm accounted for 1.6% of the sample population but
nearly 50% of all infant deaths, which implies that those subpopulations could be the focus of highly tar-
geted interventions. The preliminary logistic regression analyses of risk factors and the results of the SOM
algorithm signify that infant deaths are overwhelmingly correlated with low birth weight, preterm birth,
and access to prenatal care, facts that are all supported by the clinical and scientific literature.
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Figure 2.7: Empirical density distributions of mothers age at time of birth, separated by Medicaid status.

Figure 2.8: Marginal estimated probability of a mother receiving fewer than 10 prenatal visits as a
function of age of Medicaid status.
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Figure 2.9: Marginal estimated probability of a mother recieving Medicaid benefits as a function of age.
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(a)

(b)

(c)

Figure 2.10: (a) SOM algorithm training convergence measured in mean nearest neighbor distance over
100 iterations. (b) hierarchical clustering of the resulting node codebook vectors identifying clusters of
similar nodes. (c) observation density of each SOM node.
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(a)

(b)

Figure 2.11: (a) The distribution of scaled birth weights on the SOM learned from birthweight, gestational
age, and prenatal visits across all individuals. Cluster regions are separated by black lines. (b) Box-plot
showing intra-cluster birth weight distributions. Kruskal-Wallis test with 7 degrees of freedom performed
on data resulted in p-value < 2.2e−16.

20



Infant Mortality Stakeholder Impact 2.4. Summary and Conclusions

(a)

(b)

Figure 2.12: (a) The distribution of scaled prenatal visits on the SOM learned from birthweight, gesta-
tional age, and prenatal visits across all individuals. Cluster regions are separated by black lines. (b)
Box-plot showing intra-cluster prenatal visit count distributions. Kruskal-Wallis test with 7 degrees of
freedom performed on data resulted in p-value < 2.2e−16.
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(a)

(b)

Figure 2.13: (a) The distribution of scaled estimated gestation on the SOM learned from birthweight,
gestational age, and prenatal visits across all individuals. Cluster regions are separated by black lines.
(b) Box-plot showing intra-cluster estimated gestation distributions. Kruskal-Wallis test with 7 degrees
of freedom performed on data resulted in p-value < 2.2e−16.
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